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Abstract 

Random variables    T = JT ,T 1    are associated if 1   1 nJ 

Cov[f (p ,g(T) ]  > 0    for all increasing    f,g    for which the covariance 

exists.     T   .       is stochastically increasing in    T, T      if 
n+l J 0     1*    n 

p[T ^^t ^ lT =t .•••.T -t ]  is increasing in t, t  for each n+l    n+i 'linn 0 1*       'n 

fixed    t   ...      In this paper,   results of the following type are derived: 

If    T.     is stochastically increasing in    T. T for i = l,...,n, 

then    T T      are associated.     Examples are given of  the application 

of  these results to reliability models involving various  types of 

maintenance. 
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Generating Associated  Random Variables 

1.       Introduction 

A set of random variables    T = jT ,...,T  }     are said to be ~      l   1 n1 

associated,  if    Cov[f (T) ,g(T) ]  - 0    for all increasing functions    f,g 

for which the covariance exists  (an increasing function  is a function which 

is nondecreasing in each of  its arguments).     Esary-Proschan-Walkup 

(hereafter referred to as E-P-W)   (1967)  develop  the basic properties of 

associated random variables and present some  applications   [see also E-P-W 

(1966) for applications  to reliability theory].     Tukey  (1958)  discusses the 

notion of positive mgi'ession dcpcncicnae of    T,,    on    T.,     defined by the 

property  that    P(T >t   |T "t.]     is increasing in    t       for each fixed    t   . 

Lehmann  (1966)  discusses several  forms of bivariate dependence,  including 

positive   regression dependence   (but not bivariate  association),  shows   their 

relationships,   and  gives  a number of applications.     Esary  and Proschan 

(1967) discuss  the  relationships  between bivariate  association and  the 

forms  of  bivariate dependence  considered by Lehmann. 

It   is  shown  in E-P-W  (1967)   that  positive  regression dependence of     T 

on    T       implies association  between    T      and    T,.     In  the present paper we 

define     T  .,     to be 8U Jiaai isallu   ir^'ivar :nj  in     T  ,...,T       if n+1 • y 1*       * n 

PIT   .      t   , , JT.'t, ,... ,T =t   ]     is  increasing  in     t.,...,t       for eacli  fixed n+.     n+.'    1     1 n     n 1' n 

t   .,,   and  show: 
n+1 
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Theorem 1.1. Let    T.,...,T      be associated.    Let    T .       be stochastically   In n+i ' 

increasing in     T,...,T.       Then    T,...,T 

n+i 

are associated. 

We say "stochastically increasing"  rather than the previously introduced 

"positive  regression dependent" in order to have a terminology consistent 

with  the  usual notion of stochastic ordering, which we find it convenient 

to employ. 

Lehmann  (1967),  Example 1, considers the construction    S1  ■ hjCUj.T), 

S^ = h2(U2,T),    where    U,, U2, T    are independent and    h^ h2    are functions 

increasing in    T.    We show: 

Theorem 1.2. Let    T T      be associated.     Let    S.  - h, (U, ,T,,... ,T ),   in i        i    i    l n 

i ■ l,...,m,    where    U ,...,U      are mutually independent and also inde- 

pendent of    T T      and    h,    is increasing in    T T .      Then in i 0 i*       * n 

S,,...,S      are associated. 
1 m 

To prove Theorems 1.1 and 1.2 we consider a more general result 

(Theorem 3.1,   or alternately Theorem 3.4)  which includes both as special 

cases. 

This  investigation is primarily motivated by an implication of Theorem 

1.1;   random variables    T ,...,T      are associated if each    T      is stochastically 

increasing in    T  ,...,T      .      This fact is useful in reliability analyses in- 
1 i-i 

volving maintenance, spares, and queueing for repair. See Section 4 for 

examples. We will discuss these applications in more detail in a forth- 

coming  document   on maintenance models. 
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2.       Representation of Stochastically Increasing Random Variables 

Let    S    and    T    be random variables.     Let    S =   Is ,...,S   I     and 
~    1     nJ 

T = fl ,...,! }    be sets of random variables.  S^ is stoehas tie ally equal 

st to T, written S =  T,  if S and T have the same probability distri- 

St 
bution.    S    is stoahastiaally  less than    T,    written    Si      T,     if 

P[S>u]   < P[T>u]    for all    u.      S    is stoahastiaally inareasing in    T, 

written    S t st    in    T,     if    P[S>u|T=t(1) ]   < P[S>u|T-t(2) ]    for all 

,(1)   < ,(2)        . fl)   , .(2) _ 
^        _ ^       ,     i.e.,     c,        —    i     • •'■»•••»n« 

Let    SlT -  t    denote a set of random variables with the conditional 

probability distribution of    S,    given  that     T » t. 

We will use  the  following readily verified facts without  further 

reference.    S,T - StS,,T    is equivalent to    Sll ■ t « StS,|T - t    for all 

t.       S t  st    in    T    is equivalent  to    Sit -  t(1)   <  StslT -  t(2)     for all 

t(1)   1 t(2).     f(S,T)|T -  t - Stf(S,t)iT -  t,     for any function    f(s,t). 

The following lemma is a variation on a basic result due to Lehmann 

(1959),  p.   73. 

Lemma 2.1. Let    S  f   st in    T.      Then  there exists an increasing function 

h(u,0,    such that     S,T « s    h(U,T) ,T,    where    U    is a random variable 

independent  of    T. 

Proof. Let    F      be  the distribution  function of     SIT =  t,     i.e.. 

Ft(s)   = PfSislT-^t].        Let hCu,^)  =  inf | s :u*F  (s) }.       h    is  increasing 

in    u    by  its definition.       S   r  st     in    T    implies     h(u,t(1))   '  ti(u,t^) 

tl,r    1        - i       " T1,us h     Is    increasing     in     t.       Since     F       is 
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continuous from the right in    s,     h(u^t)   < s <=> u i  F (s).       Let    U 

be uniformly distributed on     [0,1].      Then    P[h(U,t)   < s]  = P[UiF (s)] = F(s), 
x- t t 

i.e.,  hi.U,t) = StS|T = t.  Let  U be independent of T.  Then 

h(U,t)|T = t = St h(U,t).  Thus 

SlT = t = St h(U,t) = St h(U,t)|T = t 

» St h(U,T)|T = t. 

It follows that S,T - St h(U,T),T. 11 

st 
It is immediate that if S = '  h(U,T), where h(u,t)  is increasing 

in t^ and U is independent of T,  then S + st in T. 

S ,...,S  are aonditionally independent,  given that T » t, if 

siT « t = St{S,|T « t S |T - tj, where 

SjjT « t,...,S |T = t are assumed to be mutually independent. 

Corollary 2.2.   Let S S  be conditionally independent, given 

T = t,  for all t.  Let S. + st in T, i » 1 m.   Then chere exist 

increasing functions h ,...,1)  and mutually independent random variables 

U1,...,U  that are independent of T,  such that 
im o* 

st S.T = St{h  (U  ,1) hm(U,T)},     T. 
~ ~ i        ~ m    m ~ "- 

Proof. Since    S,   t st    in    T,     set    S, ,T » St: h,(U. ,T),T    in accordance 

witli  Lemma 2.1.     Then    S. |T-  t = S h.(U.,t).      Let    U,,...,!]      be mutually 
i »N»     ~ il~ 1m 

independent.     Then since    S  ,...,S       are  conditionally independent,  given 

T =   t, 
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St| 

St, 

St, 

:ih1(ö1.<t).....hm(Unia)}|T=t 

Thus    S,  T = St{h  (U  ,T) h (U  ,T)   ,T.   I 

T'eorem 2.3. Let    S    S      be conditionally independent,   given 

T      t,  for all    t.     Let    S.   t st    in    T,   i = l,...,m.      Let    f(s,t)    be 

an  increasing  function.     Then    f(S,T)   t   st     In    T. 

Proof.        Set    S,T » St{h  (U ,T) h  (U  ,T)LT    in accordance with 

Corollary 2.2.       Let    C(u,t)  » f[h (u.,t) h  (u  ,t),t].       Then    4    is 

increasing,   and    f(S,T)  = St£(U,T).       For    t(1)   <  t(2) 

."«.t'
2>)."C(Ji.t<")|I.X"'."C(U.T)|T.i 

Thus    t;(U,T)   +  st    in    T,     i.e.,     f(S,T)   t  st    in    T.   I 

3.      Stochastically Increasing Random Variables,  and Associati 

Theorems  1.1 and 1.2  are both special  cases of: 

(2) 

ion 

Theorem 3.1. Let    T T      k„ 
                      Tl Tn    ^associated.     Let    S^...^    be con- 

ditionally independent,   giv.n    T-^.     forall    ^       Let    ^"^     ^    T) 

i"l.....m.     Then    Si s^T T       are  associated. 

Proof A. Set     S,T =  S,:| h, (U, ,T) ,... ,h   (U  ,T)|,T    in accordance  with ——— 's.^. li~ mm~~ 

Corollary 2.2.     Since    U  ,...,U      aro mutually  independent,   then     U U 

are  assori.ited     fE-P-W(1967) ,  Theorrni 2.1J.     Since     U,T    arc  independent, 
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then  i: ,...,U , T ,...,T  are associated [E-P-W(1967), Property P.]. 
1     m  i     n i. 

Let  f(s,t), g(s,t)  be increasing functions such that  Cov[f(S,T),g(S,T)] 

exists.  Let  ^(u.t) = f[h,(u ,t),...,h (u ,t),t], 

n(u,t)  = g[h  (u  ,t),...,h (u  ,t),t].       C.n    are increasing functions, and 
~~ 1     i «^ HJ   in«-   ">• 

f(S,T),-(S,T)   = StC(b,T),n(U,T).       Thus 

Cov[f(S,T),g(S,T)]  - Cov[C(UfT),n(U,T)]   > 0, 

and so    S,,...,S   ,  T, T      are associated.   M l m      i n 

We  find  the expectation of a function    f(S,T)    by first conditioning 

on    T,     i.e., 

Ef(S,T)  -ETEs|Tf(S.T) 

where E  denotes expectation over the distribution of T,  and E-|_ 1 ~ S T 

denotes expectation over the conditional distribution of S,  given a fixed 

T. 

Proof B. Let     f(s,t),  g(s,t)    be increasing functions such that 

Cov[f (S.T) ,g(S^,^) ]    exists.     Then,  dropping arguments, 

(3.1) Cov[f,g] - Efg - EfEg 

"  ETESlTf8-  iETES|TfHETES|T^ 

= ETE3|Tfg - ET{Es|TfEs|Tg| 

+ MES|TfES|T^-iETES|TfHETEs|T^ 

=  ET Covs|T[f,g]  +CovT[Es|Tf.Es|Tg]. 

Let     '*    - St S   IT = t    V    = St S   |T « t.      Since    V  ,...,V 

are   indc n.indent,     V, V      are  associated   [E-P-W(1967) ,  Theorem 2.11. 
im 
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Then  if(S.T),g(S,T)}|T = t = St| f(S,t) ,g(S.t)}|T *   t * St  f(V,t), g(V,t). 

and 

Cov_|T_ ff(S,T),g(S,T)] = Cov[f(V,t),g(V,t)] > 0, 

by the definition of association.  Thus 

(3.2) ETCovQ|T[f(S,T)tg(S,T)] > 0. 

Let  \(t) = E_|T_ f(S,T), y(t) = E_,_ »(S.T).  Since  f(S,T) + st 

in    T,    g(S,T)   t  st    in    T    by Theorem 2.3,   then    A(t),y(t)     are increasing 

functions.     Since    T,,...,T      are associated, 
1'  * n ' 

(3.3) Cov^Eg^fCS^.Eg^gtS.T)] = Cov[ A(T) , p(T) ] > 0. 

From (3.1), (3.2), and (3.3),  Cov[f(S,p ,g(S,T) ] > 0, so that 

S  S , T\,...,T  are associated. || 
1     m  1     n 

The following multivariate definitions of "stochastically less than" 

and "stochastically increasing" are of interest in the present context, 

and also because of their apparent relevance to reliability theory: 

st Definition  3.2. S    is stoohasttcallu  less  than    S',  written    Si      S', 

st if    f(S)   _"     f(S')     for all  increasing functions    f(s). 

Definition 3.3. S    is stochastic-allu  incrcasinq in    T,    written    S  t st ——^———— ~ * a ^i M- 

in     T,     if     f(S)   f   st     in    T    for all  increasing  functions     f(s). 

It  is  immediate  that     S  t  st     in    T    is  equivalent   to 

S|T =   ;M)   _SCS:T =   i^(2)   for  all    t(1)   <  t(2).       From Theorem 2.3,   if 
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S    S       arc  «.omli L ionallv   indepundent,   given     T =  t,   for  all     t, 

.iiKi     S .    *   st      in     T,      i   -   1, . , . ,ni,     then     S   *   sL      in     T,     wfiore 

s -   ^, s j. 
~ 111 

l.or.i'Vu'.   3. A. \.et     f(a,t)     be  an   incruasing  function.   Let    S   *   st     in    T. 

TluM     f(S,T)   '   st     in     T. 

Pro.f. For    t(1)   ,  t(2). 

f(S.T)(T =   t(1)   =  St   f(S.t
(1))!T =  t(1)   I  St   f(S,t(2)):T =   t(1) 

: st f(s,t(2))!T = t(2) = st f(S,T)|T = t(2). 

Thus  f(S,T):T = t(1) I St f(S,T)IT = t(2)  for all  t(1):t(2),  i.e., 

f(S,T> ' st  in T.  I! 

S ,...,S are :\ ■: ^.: r  K.; ' ''■   .'.■.^•, -' ;.'• /, given T = t,  if m *^*  »^ 

S   ,...,.S   f  T = t     are associated. 
m   ~ ~ 

Tlieorem 3.1  is  a special   case  of: 

Theorem  3.5. Let     T  ,...,T      be  associated.     Let    S   ,...,S       be  condi- 
  in I'm 

tiorallv  associated,   given     T =  t,     for all     t.       Let     S   *   st     in    T. 
'■M *SS *S*/ ^, 0^ 

Then     S   , . . . ,S   ,   T   ,...,T       are   associated. 
m      i n 

The  proof   follows  the  lines of Proof B  of Theorem  3.1,  using Lemma 

i.-i   in   place  of Tlieorem 2.3. 

4.        Applications  and Examples 

Kandom variables     T,,...,T       are  o;, ,■■. i.-: ' .:u^.:'    '■   •»•■   ;,•'•   .■   '•   .•• 
In 
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if    T    t   st     in    T  ,   T    t  st     in     |T,,Tj T    f  st     in     JT T       |. 
2 13 '   1     2' ' n l   i n-1 

Theorem 4  1. Let     T    T       be stochastically increasing in  sequence. 

Then     T,,...fT       are  associated. 1 n 

Proof. JT  }     is  a set  of associated  random variables     [E-P-W(1967) , 

Property P0].     Since     T    t  st     in    T  ,     T  ,T       are associated by  Theorem r ^       3 2 1 l'    2 

1.1.  Continuing by induction, using Theorem 1.1, T ,..,,T  are associated, 
1 n 

A random variable     T    has  a dzareasing failure rate   (DFR)   distribution 

[Barlow-Marshall-Proschan(1963)]   if    F(t+u)/F(t)     is increasing in     t     for 

all    u  >  0,     where     F(t)   = P[T>u]. 

Example  4.2. Let     T I  ...   I T be  the  order statistics  in  a sample 

of size     n     from a DFR distribution.     Let     D,   =  T,     and     D.   = T - T , 
111 

i = 2,...,n.       Then    D D      are stochastically increasing in sequence. 

Proof. Note   that 
_ n-i 

|F(d1+...+d +u) | 
P[D. . ,   u|D =d D-d. ]   = ; 1        " 

i+1 1     1 i     iJ       |   F(d +...+d.)   ) 

is increasing in     d   ,...,d.     for  all     u I 0.       Thus    D t   st     in 

D ,...,1)  ,     and so     D D      are  stochastically  increasing  in sequence.     || 
1 i in 

It  follows  from Theorem 4.1  that  D   ,...,D       are associated. 
in 

A stochastic process |x(t), t c T|  is aasoaiated in   ::'•■■    if the 

random variables X(t ) X(t, )  are associated for all k  and all 
1 k 

J t,,..., t,. • -•     r.     |x(t),   t  c  T|     is .^' ./>•''...vr;' 'a/.', v  incivac'^ij  ."•■   ':'"... 

if    X(t  ),...,X(t, )     are  stochasticalIv   increasing in sequence  for  all    k   and 
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all     |t    ■-  ...   ^  t. ) c   t.       It  is equivalent   to say  that     |x(t),   t  £   x} 
1 

is stochastically increasing in time if X(t.) t st  in  {X(t ),...,X(t.  )} 'k-i' 

for all  It < ... < t, } c T. 
1        lcJ 

Theorem 4.3.   Let |x(t), t e T| be stochastically increasing in time. 

Then |x(t), t c T|  is associated in time. 

Proof.   For any k and  {t  < ... < t. jf c T»  X(t) X(t,)  are 

stochastically increasing in sequence.  By Theorem 4.1 X(t,) ^^w^ 

are associated.  Thus {x(t), t e T| is associated in time.| | 

Theorem 4.4.   Let  |x(t), t e T| be a Markov process.  Let X(t2) f st 

in XCtj)  for all  {t, < t | C T.  Then {X(t), t e T| is stochastically 

increasing in time. 

Proof.   Lot It. < ... < t. ] c T-  Since {x(t), t e T| is a Markov 

process,  X(tk)i{x(t1) - Xj ^.J  " V^ " St ^V ' ^V^ " Vl' 

all    x.,   ...,  x^,.       Let    x    ^ y x.        * y.      .       Since    X(t,)   t  st 

in     XC^^).  XCt^lXC^^)   -xk_l.<StX(tk)|X(tk_i)   -y^^    Then 

^vi^v - X
1 

x<w " Vi^ -st ^^l^k-^ ' \.l 

1 St  XU^IxCt^)   - yk_i  = St XU^IJXCtj)   - yl XCt^j)   - y^}. 

Thus     X(tk)   '  st     in     {x(ti),...,X(tk_i)},     i.e.,     {x(t),tET}     is 

stochastically  increasing in  time.   || 

Example 4.3. Let     |X(t),   t  c   T}    be a Markov process  such that    X(t)   = 0 

or     1     for each     t  E   T.       Let 
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Then 

P[X(t2) = 1 | XCtj) = 1] = pCtj.t^ 

P[X(t2) = 0 | XCt^ = 0] = qCtj.t^ 

where p(t1,t2) + q(t1,t2) 1  1 for all  {t < t   }  C T. 

|x(t), t £ T|  is stochastically increasing in time. 

Proof.   For {tl   < t2l C T,  set iKtj.tp = St X(t2) IxC^) = 1, 

V(t1,t2) = St XCtplxCtj) = 0.   Then  P[V(t1,t2) = 1] = 1 - q(t1,t2) 

< p(t1,t2) = P[U(t1,t2) = 1], i.e.,  V(t1,t2) < St  U(t1,t2).   Thus 

X(t2) t st in XCtj),  and by Theorem 4.4  |x(t), t e f)  is stochastically 

increasing in time. || 

In reliability theory, processes of the type considered in Example 

4.5 are basic models for the performance of a device subject to alternate 

failure and repair, where X(t) = 1 if the device is functioning at time 

t,  X(t) = 0 if the device is failed at time t.  If T » |0,1,...} 

and p(k.,k+l) = p, q(k,k+l) * q,  then  {x(t), t c T}  corresponds 

to an alternating renewal process where time from repair to failure has a 

geometric distribution with parameter p, and time from failure to repair 

has a geometric distribution with parameter q. This geometric-geometric 

performance process is stochastically increasing in time if p + q ^ 1. 

If T = [0,-H10)  and 

pUj.tn) = (A+u)'1^ + ^ exp[-(Hu)(t -tj)]} 

qUj.t,) = (A+M)"1|A + u  exp[-(A+u)(t,-t,)]|, 

then     ix(t),   t  E   T|     corresponds  to  an  alternating  renewal  process where 
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time  from repair to  failure has an exponential distribution with parameter 

-,    and time  from failure  to repair has an exponential distribution with 

parameter    u.       Since    p(t1,t2)  + qUj,^)   1 1     for all    tj   < t2,   X  > 0, 

u _ 0,     the exponential-exponential performance process is stochastically 

increasing in time.     It   follows from Theorem 4.3  that  the exponential- 

exponential performance process and  the geometric-geometric performance 

process with p + q ü 1     are associated in  time     [cf.  E-P-W(1966)]. 

Son.e properties and applications  in reliability  theory of performance 

processes  that  are associated in time are discussed in E-P-W(1966). 

In  the process of Example 4.5    {XCt.),  X(t2)}     are,  for    {tj   <   t2} C T, 

stochastically representable by    X(t  )     and transition random variables 

uctj.tj = st xCtplxUj) - l,   vct^^) - st x(t2)|x(ti) - 0,    such 

that    X(t  ),  U(t,,t,),   V(t.,t..)     are mutually independent. 

U(t1,t2)  - 1 
► • X(t2)  -  1 

► • X(t,)   - 0 

X(t ).   X(t  )j = st   jXCtj),  X(t1)U(t1,t2)  +   [l-X(t1)]V(t1,t2)},     and so 

< st A(t )   •  st     in    X(t )     is equivalent  to    V(t1,t2)   1        U(t  ,t ).       Setting 

L'(t  ,t  ),   \(t   ,t  )     independent is  convenient,  but not essential  to the 

reprc'scntation. 
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In a frequently studied reliability model involving a complex of n 

identical devices, the functioning devices are in various degrees of service 

or standby for service, and the failed devices are in various degrees of 

repair or standby for repair.  In this model the basic descriptor of 

performance is X(t) ■ the number of devices functioning at time t.   The 

following generalization of Example 4.5 covers a variety of cases in which 

the process  |X(t), t c T|  is stochastically increasing in time, and 

thus associated in time. 

Example A.d.   Let  |x(t), t e T}  be a Markov process such that 

X(t) =0 or 1 or  ...  or n  for each t c T.   For all  {t. < t } C T 

let 

x(t ^xctj) - i = st u^tj.t.) + ... + ^(tj.t) + v  (t^O + ... + vn(t1,t..), 

i = 0 n, where U^t .O = 0 or 1, V^tj.t ) • 0 or  1,  i - l,...,n, 

jUjUj.t ), V^t^t )) {^(tj.t ), V/tj.t )|  are mutually inde- 

st 
pendent couples, and V.(t,,t2) < U.Ct.jt), i = l,...,n.  Then 

jX(t), t ! r|  is stochastically increasing in time. 

Proof.   Set 

(U (t  t )  if  i _ j 
Z (t.)|X(t ) = i = st { J 
J " (vytj.t ) if i • j, 

j = l,...,n. Since V (t ,t ) _ St U (t ,t ), Z.(t ) * st in X(t ). 

Let i'.. (t ),...,/, (t ) be conditionally independent, given X(t.) = 1, 

i = i),... ,ii.  Tlien 



14- 

X(I   )   X(t ,)   =   i 
i 

st ^=i]z.(t )ix(t]) = i/ = st|^=izj(t )j|X(t )   =   i. 

Tlius     JX(t ^.XCt,)!   = 
st 

n i 

V      Z.(tJ.X(t.)   .       Since 
^ = 1  J     ■' 1   i 

i   =  u,... ,li. 

n 
y]      y..(t   )   '   st     in     X(t  )     by  Theorem 2.3,     X(t  )   t  st     in     X(t  ). 

We   illustrate   the application of  Example A.6  for plans   involving  two 

identical  devices,     n = 2,     where  time  is  measured in discrete  cycles,   say 

= '0,1,...f. We suppose that devices fail or are repaired within 

cycles, and that devices are transferred from standby for service to 

service,   service  to  standby   for  repair,  etc.,  between  cycles. 

devices   functioning 

at  end  of  k''1   cycle 

lev ices   failed 

it  end  of  1*'   evele 

(© 

I© 
service 

"sockets" 

(© 

I® 
repair 

"sockets' 

time    k 

filled second 

filled first 

filled first 

filled second 

Wf view the experience of a device within each cycle as independent of 

its eyperifiicf in preceding cycles, and dependent only on the type of 

.. rvice or repair it is subject to on th.it cycle. 
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Case 4.6(a). 
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time    k 

U^k.k+l)   - 1 

V2(k,k+1)   - 1 

Ui(k,k+1)  = 0 

V2(k,k+1)   » 0 

■♦-   / Q    standby for service 

■♦-   \ ^)    service 

>-    / Q    repair 

•♦►    \  Q   standby for repair 

time    k + 1 

Assuming    X(tk),  U^k.k+l),  V (k,k+l)     mutually independent; 

X(k+l)|x(k)  - 2 st 

st 

lyk.k+l)  + 1. 

X(k+l)|x(k)  -  1 - !,t  UjCk.k+l)  + V9(k,k+1) 

X(k+l)|x(k)  - 0 st 
+ V2(k,k+1). 

X(k+1)   t  st    in    X(k)     by Example 4.6. 

Case 4.6(b). U2(k,k+1) - 1 

U^k.k+l) - 1     /Q 

V?(k,k+1) -1     / 

V^k.k+l) - 1 

U2(k,k+1) » 0 

Ui(k,k+1) => 0 

V2(k,k+1) = 0 

Vi(k,k+1) = 0 

semi-active service 

active service 

JQact ive  repair 

semi-active  repair 

time    k time    k + 1 

Assuming    X(k),   U  (k,k+l),   U  (k,k+I),   V  (k,k+l),   V  (k,k+l)     mutually 
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independent: 

st X(k+l)|x(k) = 2 = St yk.k+1) + U (k.k+1). 

X(k+l)|x(k) = 1 = st U^k.k+1) + V2(k,k+1). 

X(k+l)|x(k) = 0 = St V1 (k.k+1) + V2 (k.k+1). 

By Example 4.6, X(k+1) t st in X(k)  if V^k.k+l) < St U1 (k.k+1)  and 

V2(k.k+1) < St U2(k,k+1), e.g., if U/k.k+l) 1  St U2(k.k+1), 

V^k.k+l) <  st V2(k.k+1), and V2(k.k+1) < st Uj(k.k+1). | 

Further applications of Example 4.6, e.g., to cases in which time 

is measured continuously, will be considered in a forthcoming document. 
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